Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; : 101946, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657735

RESUMO

Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.

2.
JCI Insight ; 9(4)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271099

RESUMO

A distinct adipose tissue distribution pattern was observed in patients with methylmalonyl-CoA mutase deficiency, an inborn error of branched-chain amino acid (BCAA) metabolism, characterized by centripetal obesity with proximal upper and lower extremity fat deposition and paucity of visceral fat, that resembles familial multiple lipomatosis syndrome. To explore brown and white fat physiology in methylmalonic acidemia (MMA), body composition, adipokines, and inflammatory markers were assessed in 46 patients with MMA and 99 matched controls. Fibroblast growth factor 21 levels were associated with acyl-CoA accretion, aberrant methylmalonylation in adipose tissue, and an attenuated inflammatory cytokine profile. In parallel, brown and white fat were examined in a liver-specific transgenic MMA mouse model (Mmut-/- TgINS-Alb-Mmut). The MMA mice exhibited abnormal nonshivering thermogenesis with whitened brown fat and had an ineffective transcriptional response to cold stress. Treatment of the MMA mice with bezafibrates led to clinical improvement with beiging of subcutaneous fat depots, which resembled the distribution seen in the patients. These studies defined what we believe to be a novel lipodystrophy phenotype in patients with defects in the terminal steps of BCAA oxidation and demonstrated that beiging of subcutaneous adipose tissue in MMA could readily be induced with small molecules.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Fatores de Crescimento de Fibroblastos , Lipodistrofia , Animais , Humanos , Camundongos , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Camundongos Transgênicos
3.
J Clin Invest ; 134(4)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175730

RESUMO

Melanocortin 4 receptor (MC4R) mutations are the most common cause of human monogenic obesity and are associated with hyperphagia and increased linear growth. While MC4R is known to activate Gsα/cAMP signaling, a substantial proportion of obesity-associated MC4R mutations do not affect MC4R/Gsα signaling. To further explore the role of specific MC4R signaling pathways in the regulation of energy balance, we examined the signaling properties of one such mutant, MC4R (F51L), as well as the metabolic consequences of MC4RF51L mutation in mice. The MC4RF51L mutation produced a specific defect in MC4R/Gq/11α signaling and led to obesity, hyperphagia, and increased linear growth in mice. The ability of a melanocortin agonist to acutely inhibit food intake when delivered to the paraventricular nucleus (PVN) was lost in MC4RF51L mice, as well as in WT mice in which a specific Gq/11α inhibitor was delivered to the PVN; this provided evidence that a Gsα-independent signaling pathway, namely Gq/11α, significantly contributes to the actions of MC4R on food intake and linear growth. These results suggest that a biased MC4R agonist that primarily activates Gq/11α may be a potential agent to treat obesity with limited untoward cardiovascular and other side effects.


Assuntos
Hiperfagia , Receptor Tipo 4 de Melanocortina , Humanos , Camundongos , Animais , Receptor Tipo 4 de Melanocortina/metabolismo , Hiperfagia/genética , Hiperfagia/metabolismo , Obesidade/metabolismo , Transdução de Sinais/fisiologia , Mutação
4.
ACS Med Chem Lett ; 14(12): 1640-1646, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116442

RESUMO

A1 adenosine receptor (A1AR) agonists have cerebroprotective, cardioprotective, antinociceptive, and other pharmaceutical applications. We explored the structure-activity relationship of 5-arylethynyl aminothiophenes as A1AR positive allosteric modulators (PAMs). The derivatives were compared in binding and functional assays at the human A1AR, indicating that some fluoro-substituted analogues have enhanced PAM activity. We identified substitution of the terminal phenyl ring in 12 (2-F-Ph), 15 (3,4-F2-Ph, MRS7935), and 21 (2-CF3-Ph) as particularly enhancing the PAM activity. 15 was also shown to act as an A1 ago-PAM with EC50 ≈ 2 µM, without activity (30 µM) at other ARs. Molecular modeling indicated that both the 5-arylethynyl and the 4-neopentyl groups are located in a region outside the receptor transmembrane helix bundle that is in contact with the phospholipid bilayer, consistent with the preference for nonpolar substitution of the aryl moiety. Although they are hydrophobic, these PAMs could provide potential drug candidate molecules for engaging protective A1ARs.

5.
PLoS One ; 18(10): e0292610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37812612

RESUMO

OBJECTIVE: Otopetrin 1 (OTOP1) is a proton channel that is highly expressed in brown adipose tissue. We examined the physiology of Otop1-/- mice, which lack functional OTOP1. METHODS: Mice were studied by indirect calorimetry and telemetric ambulatory body temperature monitoring. Mitochondrial function was measured as oxygen consumption and extracellular acidification. RESULTS: Otop1-/- mice had similar body temperatures as control mice at baseline and in response to cold and hot ambient temperatures. However, in response to fasting the Otop1-/- mice exhibited an exaggerated hypothermia and hypometabolism. Similarly, in ex vivo tests of Otop1-/- brown adipose tissue mitochondrial function, there was no change in baseline oxygen consumption, but the oxygen consumption was reduced after maximal uncoupling with FCCP and increased upon stimulation with the ß3-adrenergic agonist CL316243. Mast cells also express Otop1, and Otop1-/- mice had intact, possibly greater hypothermia in response to mast cell activation by the adenosine A3 receptor agonist MRS5698. No increase in insulin resistance was observed in the Otop1-/- mice. CONCLUSIONS: Loss of OTOP1 does not change basal function of brown adipose tissue but affects stimulated responses.


Assuntos
Hipotermia , Animais , Camundongos , Tecido Adiposo Marrom , Temperatura Corporal , Regulação da Temperatura Corporal , Jejum , Camundongos Knockout
6.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395281

RESUMO

Understanding how skeletal muscle fiber proportions are regulated is vital to understanding muscle function. Oxidative and glycolytic skeletal muscle fibers differ in their contractile ability, mitochondrial activity, and metabolic properties. Fiber-type proportions vary in normal physiology and disease states, although the underlying mechanisms are unclear. In human skeletal muscle, we observed that markers of oxidative fibers and mitochondria correlated positively with expression levels of PPARGC1A and CDK4 and negatively with expression levels of CDKN2A, a locus significantly associated with type 2 diabetes. Mice expressing a constitutively active Cdk4 that cannot bind its inhibitor p16INK4a, a product of the CDKN2A locus, were protected from obesity and diabetes. Their muscles exhibited increased oxidative fibers, improved mitochondrial properties, and enhanced glucose uptake. In contrast, loss of Cdk4 or skeletal muscle-specific deletion of Cdk4's target, E2F3, depleted oxidative myofibers, deteriorated mitochondrial function, and reduced exercise capacity, while increasing diabetes susceptibility. E2F3 activated the mitochondrial sensor PPARGC1A in a Cdk4-dependent manner. CDK4, E2F3, and PPARGC1A levels correlated positively with exercise and fitness and negatively with adiposity, insulin resistance, and lipid accumulation in human and rodent muscle. All together, these findings provide mechanistic insight into regulation of skeletal muscle fiber-specification that is of relevance to metabolic and muscular diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Musculares , Camundongos , Animais , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Desenvolvimento Muscular , Fator de Transcrição E2F3/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo
7.
J Neuroendocrinol ; 35(11): e13286, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37309259

RESUMO

Neuropeptides may exert trophic effects during development, and then neurotransmitter roles in the developed nervous system. One way to associate peptide-deficiency phenotypes with either role is first to assess potential phenotypes in so-called constitutive knockout mice, and then proceed to specify, regionally and temporally, where and when neuropeptide expression is required to prevent these phenotypes. We have previously demonstrated that the well-known constellation of behavioral and metabolic phenotypes associated with constitutive pituitary adenylate cyclase-activating peptide (PACAP) knockout mice are accompanied by transcriptomic alterations of two types: those that distinguish the PACAP-null phenotype from wild-type (WT) in otherwise quiescent mice (cPRGs), and gene induction that occurs in response to acute environmental perturbation in WT mice that do not occur in knockout mice (aPRGs). Comparing constitutive PACAP knockout mice to a variety of temporally and regionally specific PACAP knockouts, we show that the prominent hyperlocomotor phenotype is a consequence of early loss of PACAP expression, is associated with Fos overexpression in hippocampus and basal ganglia, and that a thermoregulatory effect previously shown to be mediated by PACAP-expressing neurons of medial preoptic hypothalamus is independent of PACAP expression in those neurons in adult mice. In contrast, PACAP dependence of weight loss/hypophagia triggered by restraint stress, seen in constitutive PACAP knockout mice, is phenocopied in mice in which PACAP is deleted after neuronal differentiation. Our results imply that PACAP has a prominent role as a trophic factor early in development determining global central nervous system characteristics, and in addition a second, discrete set of functions as a neurotransmitter in the fully developed nervous system that support physiological and psychological responses to stress.


Assuntos
Neurotransmissores , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Neurônios/metabolismo , Fenótipo , Camundongos Knockout
8.
Mol Metab ; 71: 101699, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858190

RESUMO

OBJECTIVE: Physical activity is a major component of total energy expenditure (TEE) that exhibits extreme variability in mice. Our objective was to construct a general, physiology-based model of TEE to accurately quantify the energy cost of physical activity. METHODS: Spontaneous home cage physical activity, body temperature, TEE, and energy intake were measured with frequent sampling. The energy cost of activity was modeled considering six contributors to TEE (basal metabolic rate, thermic effect of food, body temperature, cold induced thermogenesis, physical activity, and body weight). An ambient temperature of 35 °C was required to remove the contribution from cold induced thermogenesis. Basal metabolic rate was adjusted for body temperature using a Q10 temperature coefficient. RESULTS: We developed a TEE model that robustly explains 70-80% of the variance in TEE at 35 °C while fitting only two parameters, the basal metabolic rate and the mass-specific energy cost per unit of physical activity, which averaged 60 cal/km/g body weight. In Ucp1-/- mice the activity cost was elevated by 60%, indicating inefficiency and increased muscle thermogenesis. The diurnal rhythm in TEE was quantitatively explained by the combined diurnal differences in physical activity, body temperature, and energy intake. Incorporating body temperature into human basal metabolic rate measurements significantly reduced the inter-individual variation. CONCLUSIONS: The physiology-based model of TEE allows quantifying the energy cost of physical activity. While applied here to mice, the model should be generally valid across species. Due to the effect of body temperature, we suggest that basal metabolic rate measurements be corrected to a reference body temperature, including in humans. Having an accurate cost of physical activity allows mechanistic dissection of disorders of energy homeostasis, including obesity.


Assuntos
Metabolismo Basal , Metabolismo Energético , Humanos , Animais , Camundongos , Metabolismo Energético/fisiologia , Peso Corporal/fisiologia , Metabolismo Basal/fisiologia , Obesidade , Termogênese/fisiologia
9.
Purinergic Signal ; 19(3): 551-564, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36781825

RESUMO

Some non-adenosinergic drugs are reported to also act through adenosine receptors (ARs). We used mouse hypothermia, which can be induced by agonism at any of the four ARs, as an in vivo screen for adenosinergic effects. An AR contribution was identified when a drug caused hypothermia in wild type mice that was diminished in mice lacking all four ARs (quadruple knockout, QKO). Alternatively, an adenosinergic effect was identified if a drug potentiated adenosine-induced hypothermia. Four drugs (dipyridamole, nimodipine, cilostazol, cyclosporin A) increased the hypothermia caused by adenosine. Dipyridamole and nimodipine probably achieved this by inhibition of adenosine clearance via ENT1. Two drugs (cannabidiol, canrenoate) did not cause hypothermia in wild type mice. Four other drugs (nifedipine, ranolazine, ketamine, ethanol) caused hypothermia, but the hypothermia was unchanged in QKO mice indicating non-adenosinergic mechanisms. Zinc chloride caused hypothermia and hypoactivity; the hypoactivity was blunted in the QKO mice. Interestingly, the antidepressant amitriptyline caused hypothermia in wild type mice that was amplified in the QKO mice. Thus, we have identified adenosine-related effects for some drugs, while other candidates do not affect adenosine signaling by this in vivo assay. The adenosine-modulating drugs could be considered for repurposing based on predicted effects on AR activation.


Assuntos
Adenosina , Hipotermia , Camundongos , Animais , Adenosina/farmacologia , Hipotermia/induzido quimicamente , Nimodipina/efeitos adversos , Receptores Purinérgicos P1 , Dipiridamol/efeitos adversos
10.
Hepatology ; 77(1): 239-255, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35460276

RESUMO

BACKGROUND AND AIMS: Peroxisome proliferator-activated receptor α (PPARα) regulates fatty acid transport and catabolism in liver. However, the role of intestinal PPARα in lipid homeostasis is largely unknown. Here, intestinal PPARα was examined for its modulation of obesity and NASH. APPROACH AND RESULTS: Intestinal PPARα was activated and fatty acid-binding protein 1 (FABP1) up-regulated in humans with obesity and high-fat diet (HFD)-fed mice as revealed by using human intestine specimens or HFD/high-fat, high-cholesterol, and high-fructose diet (HFCFD)-fed C57BL/6N mice and PPARA -humanized, peroxisome proliferator response element-luciferase mice. Intestine-specific Ppara or Fabp1 disruption in mice fed a HFD or HFCFD decreased obesity-associated metabolic disorders and NASH. Molecular analyses by luciferase reporter assays and chromatin immunoprecipitation assays in combination with fatty acid uptake assays in primary intestinal organoids revealed that intestinal PPARα induced the expression of FABP1 that in turn mediated the effects of intestinal PPARα in modulating fatty acid uptake. The PPARα antagonist GW6471 improved obesity and NASH, dependent on intestinal PPARα or FABP1. Double-knockout ( Ppara/Fabp1ΔIE ) mice demonstrated that intestinal Ppara disruption failed to further decrease obesity and NASH in the absence of intestinal FABP1. Translationally, GW6471 reduced human PPARA-driven intestinal fatty acid uptake and improved obesity-related metabolic dysfunctions in PPARA -humanized, but not Ppara -null, mice. CONCLUSIONS: Intestinal PPARα signaling promotes NASH progression through regulating dietary fatty acid uptake through modulation of FABP1, which provides a compelling therapeutic target for NASH treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Camundongos Knockout , Intestinos , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/farmacologia , Ácidos Graxos/metabolismo
11.
Nat Commun ; 13(1): 7303, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435799

RESUMO

White adipose tissue browning is a key metabolic process controlled by epigenetic factors that facilitate changes in gene expression leading to altered cell identity. We find that male mice lacking the nucleosome binding proteins HMGN1 and HMGN2 (DKO mice), show decreased body weight and inguinal WAT mass, but elevated food intake, WAT browning and energy expenditure. DKO white preadipocytes show reduced chromatin accessibility and lower FRA2 and JUN binding at Pparγ and Pparα promoters. White preadipocytes and mouse embryonic fibroblasts from DKO mice show enhanced rate of differentiation into brown-like adipocytes. Differentiating DKO adipocytes show reduced H3K27ac levels at white adipocyte-specific enhancers but elevated H3K27ac levels at brown adipocyte-specific enhancers, suggesting a faster rate of change in cell identity, from white to brown-like adipocytes. Thus, HMGN proteins function as epigenetic factors that stabilize white adipocyte cell identity, thereby modulating the rate of white adipose tissue browning and affecting energy metabolism in mice.


Assuntos
Tecido Adiposo Marrom , Nucleossomos , Masculino , Animais , Camundongos , Nucleossomos/metabolismo , Tecido Adiposo Marrom/metabolismo , Proteínas HMGN/metabolismo , Epigênese Genética , Fibroblastos/metabolismo , Tecido Adiposo Branco/metabolismo , Adipócitos Marrons/metabolismo , Metabolismo Energético/genética
12.
Nat Commun ; 13(1): 1652, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351896

RESUMO

Obesity is the major driver of the global epidemic in type 2 diabetes (T2D). In individuals with obesity, impaired insulin action leads to increased lipolysis in adipocytes, resulting in elevated plasma free fatty acid (FFA) levels that promote peripheral insulin resistance, a hallmark of T2D. Here we show, by using a combined genetic/biochemical/pharmacologic approach, that increased adipocyte lipolysis can be prevented by selective activation of adipocyte Gq signaling in vitro and in vivo (in mice). Activation of this pathway by a Gq-coupled designer receptor or by an agonist acting on an endogenous adipocyte Gq-coupled receptor (CysLT2 receptor) greatly improved glucose and lipid homeostasis in obese mice or in mice with adipocyte insulin receptor deficiency. Our findings identify adipocyte Gq signaling as an essential regulator of whole-body glucose and lipid homeostasis and should inform the development of novel classes of GPCR-based antidiabetic drugs.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Lipídeos , Lipólise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo
13.
Nat Commun ; 13(1): 22, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013148

RESUMO

Activation of the sympathetic nervous system causes pronounced metabolic changes that are mediated by multiple adrenergic receptor subtypes. Systemic treatment with ß2-adrenergic receptor agonists results in multiple beneficial metabolic effects, including improved glucose homeostasis. To elucidate the underlying cellular and molecular mechanisms, we chronically treated wild-type mice and several newly developed mutant mouse strains with clenbuterol, a selective ß2-adrenergic receptor agonist. Clenbuterol administration caused pronounced improvements in glucose homeostasis and prevented the metabolic deficits in mouse models of ß-cell dysfunction and insulin resistance. Studies with skeletal muscle-specific mutant mice demonstrated that these metabolic improvements required activation of skeletal muscle ß2-adrenergic receptors and the stimulatory G protein, Gs. Unbiased transcriptomic and metabolomic analyses showed that chronic ß2-adrenergic receptor stimulation caused metabolic reprogramming of skeletal muscle characterized by enhanced glucose utilization. These findings strongly suggest that agents targeting skeletal muscle metabolism by modulating ß2-adrenergic receptor-dependent signaling pathways may prove beneficial as antidiabetic drugs.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Clembuterol/farmacologia , Hipoglicemiantes/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Animais , Fenômenos Bioquímicos , Clembuterol/metabolismo , Feminino , Glucose/metabolismo , Homeostase , Resistência à Insulina , Masculino , Doenças Metabólicas , Metabolômica , Camundongos , Camundongos Knockout , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais
14.
Mol Metab ; 55: 101415, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883278

RESUMO

OBJECTIVE: The goal of this study was to determine the glucometabolic effects of acute activation of Gs signaling in skeletal muscle (SKM) in vivo and its contribution to whole-body glucose homeostasis. METHODS: To address this question, we studied mice that express a Gs-coupled designer G protein-coupled receptor (Gs-DREADD or GsD) selectively in skeletal muscle. We also identified two Gs-coupled GPCRs that are endogenously expressed by SKM at relatively high levels (ß2-adrenergic receptor and CRF2 receptor) and studied the acute metabolic effects of activating these receptors in vivo by highly selective agonists (clenbuterol and urocortin 2 (UCN2), respectively). RESULTS: Acute stimulation of GsD signaling in SKM impaired glucose tolerance in lean and obese mice by decreasing glucose uptake selectively into SKM. The acute metabolic effects following agonist activation of ß2-adrenergic and, potentially, CRF2 receptors appear primarily mediated by altered insulin release. Clenbuterol injection improved glucose tolerance by increasing insulin secretion in lean mice. In SKM, clenbuterol stimulated glycogen breakdown. UCN2 injection resulted in decreased glucose tolerance associated with lower plasma insulin levels. The acute metabolic effects of UCN2 were not mediated by SKM Gs signaling. CONCLUSIONS: Selective activation of Gs signaling in SKM causes an acute increase in blood glucose levels. However, acute in vivo stimulation of endogenous Gs-coupled receptors enriched in SKM has only a limited impact on whole-body glucose homeostasis, most likely due to the fact that these receptors are also expressed by pancreatic islets where they modulate insulin release.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Clembuterol/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/fisiologia , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Homeostase/efeitos dos fármacos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/fisiologia , Obesidade/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
15.
Obesity (Silver Spring) ; 30(1): 153-164, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34825496

RESUMO

OBJECTIVES: Beta-3 adrenergic receptors (ß3-AR) stimulate lipolysis and thermogenesis in white and brown adipose tissue (WAT and BAT). Obesity increases oxidative stress and inflammation that attenuate AT ß3-AR signaling. The objective of this study was to test the hypothesis that the combination of the ß3-AR agonist CL-316,243 (CL) and the antioxidant alpha-lipoic acid (ALA) would lower inflammation in diet-induced obesity (DIO) and improve ß3-AR function. METHODS: A total of 40 DIO mice were separated into four groups: Control (per os and intraperitoneal [IP] vehicle); CL alone (0.01 mg/kg IP daily); ALA alone (250 mg/kg in drinking water); or ALA+CL combination, all for 5 weeks. RESULTS: Food intake was similar in all groups; however, mice receiving ALA+CL showed improved body composition and inflammation as well as lower body weight (+1.7 g Control vs. -2.5 g ALA+CL [-7%]; p < 0.01) and percentage of body fat (-9%, p < 0.001). Systemic and epididymal WAT inflammation was lower with ALA+CL than all other groups, with enhanced recruitment of epididymal WAT anti-inflammatory CD206+ M2 macrophages. ß3-AR signaling in WAT was enhanced in the combination-treatment group, with higher mRNA and protein levels of thermogenic uncoupling protein 1 and AT lipases. CONCLUSIONS: Chronic treatment with ALA and a ß3-AR agonist reduces DIO-induced inflammation. AT immune modulation could be a therapeutic target in patients with obesity.


Assuntos
Ácido Tióctico , Tecido Adiposo Marrom/metabolismo , Agonistas Adrenérgicos/metabolismo , Agonistas Adrenérgicos/farmacologia , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ácido Tióctico/metabolismo , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico
16.
Eur J Med Chem ; 228: 113983, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34844790

RESUMO

Following our study of 4'-truncated (N)-methanocarba-adenosine derivatives that displayed unusually high mouse (m) A3AR affinity, we incorporated dopamine-related N6 substituents in the full agonist 5'-methylamide series. N6-(2-(4-Hydroxy-3-methoxy-phenyl)ethyl) derivative MRS7618 11 displayed Ki (nM) 0.563 at hA3AR (∼20,000-fold selective) and 1.54 at mA3AR. 2-Alkyl ethers maintained A3 affinity, but with less selectivity than 2-alkynes. Parallel functional assays of G protein-dependent and ß-arrestin 2 (ßarr2)-dependent pathways indicate these are full agonists but not biased. Through use of computational modeling, we hypothesized that phenyl OH/OMe groups interact with polar residues, particularly Gln261, on the mA3AR extracellular loops as the basis for the affinity enhancement. Although the pharmacokinetics indicated facile clearance of parent O-methyl catechol nucleosides 21 and 31, prolonged mA3AR activation in vivo was observed in a hypothermia model, suggested potential formation of active metabolites through demethylation. Selected analogues induced mouse hypothermia following i.p. injection, indicative of peripheral A3AR agonism in vivo.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Dopamina/farmacologia , Receptor A3 de Adenosina/metabolismo , Agonistas do Receptor A3 de Adenosina/síntese química , Agonistas do Receptor A3 de Adenosina/química , Dopamina/síntese química , Dopamina/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
17.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948160

RESUMO

The heart primarily uses fatty acids as energy substrates. Adipose lipolysis is a major source of fatty acids, particularly under stress conditions. In this study, we showed that mice with selective inactivation of the lipolytic coactivator comparative gene identification-58 (CGI-58) in adipose tissue (FAT-KO mice), relative to their littermate controls, had lower circulating FA levels in the fed and fasted states due to impaired adipose lipolysis. They preferentially utilized carbohydrates as energy fuels and were more insulin sensitive and glucose tolerant. Under cold stress, FAT-KO versus control mice had >10-fold increases in glucose uptake in the hearts but no increases in other tissues examined. Plasma concentrations of atrial natriuretic peptide and cardiac mRNAs for atrial and brain-type natriuretic peptides, two sensitive markers of cardiac remodeling, were also elevated. After one week of cold exposure, FAT-KO mice showed reduced cardiac expression of several mitochondrial oxidative phosphorylation proteins. After one month of cold exposure, hearts of these animals showed depressed functions, reduced SERCA2 protein, and increased proteins for MHC-ß, collagen I proteins, Glut1, Glut4 and phospho-AMPK. Thus, CGI-58-dependent adipose lipolysis critically regulates cardiac metabolism and function, especially during cold adaptation. The adipose-heart axis may be targeted for the management of cardiac dysfunction.


Assuntos
Aclimatação , Resposta ao Choque Frio , Glucose/metabolismo , Lipólise , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Animais , Caderinas/deficiência , Caderinas/metabolismo , Glucose/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética
18.
Mol Metab ; 53: 101332, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478905

RESUMO

OBJECTIVE: To improve understanding of mouse energy homeostasis and its applicability to humans, we quantitated the effects of housing density on mouse thermal physiology in both sexes. METHODS: Littermate wild type and Brs3-null mice were single- or group- (three per cage) housed and studied by indirect calorimetry with continuous measurement of core body temperature, energy expenditure, physical activity, and food intake. RESULTS: At 23 °C, below thermoneutrality, single-housed males had a lower body temperature and unchanged metabolic rate compared to group-housed controls. In contrast, single-housed females maintained a similar body temperature to group-housed controls by increasing their metabolic rate. With decreasing ambient temperature below 27 °C, only group-housed mice decreased their heat conductance, likely due to huddling, thus interfering with the energy expenditure vs ambient temperature relationship described by Scholander. In a hot environment (35 °C), the single-housed mice were less heat stressed. Upon fasting, single-housed mice had larger reductions in body temperature, with male mice having more torpor episodes of similar duration and female mice having a similar number of torpor episodes that lasted longer. Qualitatively, the effects of housing density on thermal physiology of Brs3-null mice generally mimicked the effects in controls. CONCLUSIONS: Single housing is more sensitive than group housing for detecting thermal physiology phenotypes. Single housing increases heat loss and amplifies the effects of fasting or a cold environment. Male and female mice utilize different thermoregulatory strategies to respond to single housing.


Assuntos
Composição Corporal/fisiologia , Temperatura Corporal , Receptores da Bombesina/metabolismo , Temperatura , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores da Bombesina/deficiência
19.
Nat Metab ; 3(8): 1042-1057, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34417593

RESUMO

Obesity and its consequences are among the greatest challenges in healthcare. The gut microbiome is recognized as a key factor in the pathogenesis of obesity. Using a mouse model, we show here that a wild-derived microbiome protects against excessive weight gain, severe fatty liver disease and metabolic syndrome during a 10-week course of high-fat diet. This phenotype is transferable only during the first weeks of life. In adult mice, neither transfer nor severe disturbance of the wild-type microbiome modifies the metabolic response to a high-fat diet. The protective phenotype is associated with increased secretion of metabolic hormones and increased energy expenditure through activation of brown adipose tissue. Thus, we identify a microbiome that protects against weight gain and its negative consequences through metabolic programming in early life. Translation of these results to humans may identify early-life therapeutics that protect against obesity.


Assuntos
Dieta , Resistência à Doença , Suscetibilidade a Doenças , Exposição Ambiental , Interações entre Hospedeiro e Microrganismos , Microbiota , Obesidade/etiologia , Ração Animal , Animais , Dieta/efeitos adversos , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Microbioma Gastrointestinal , Camundongos , Fatores de Tempo , Aumento de Peso
20.
Nat Metab ; 3(7): 923-939, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34211180

RESUMO

MYC is a transcription factor with broad biological functions, notably in the control of cell proliferation. Here, we show that intestinal MYC regulates systemic metabolism. We find that MYC expression is increased in ileum biopsies from individuals with obesity and positively correlates with body mass index. Intestine-specific reduction of MYC in mice improves high-fat-diet-induced obesity, insulin resistance, hepatic steatosis and steatohepatitis. Mechanistically, reduced expression of MYC in the intestine promotes glucagon-like peptide-1 (GLP-1) production and secretion. Moreover, we identify Cers4, encoding ceramide synthase 4, catalysing de novo ceramide synthesis, as a MYC target gene. Finally, we show that administration of the MYC inhibitor 10058-F4 has beneficial effects on high-fat-diet-induced metabolic disorders, and is accompanied by increased GLP-1 and reduced ceramide levels in serum. This study positions intestinal MYC as a putative drug target against metabolic diseases, including non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.


Assuntos
Mucosa Intestinal/metabolismo , Obesidade/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Biomarcadores , Dieta Hiperlipídica , Modelos Animais de Doenças , Suscetibilidade a Doenças , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Ílio/metabolismo , Resistência à Insulina , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/etiologia , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...